Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 205–225 (Mi znsl1143)  

This article is cited in 8 scientific papers (total in 8 papers)

The order of the Epstein zeta-function in the critical strip

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (254 kB) Citations (8)
Abstract: Let $Q(x_1,\dots,x_k)$ be a positive quadratic form of $k\ge2$ variables and let $\zeta(s;Q)$ be the Epstein zeta-function of the form $Q$. The growth rate of $\zeta(s;Q)$ on the line $\operatorname{Re}s=(k-1)/2$ is investigated. For $k\ge4$ and for an integral form $Q$, the problem is reduced to a similar problem on the behavior of the Dirichlet $L$-series on the line $\operatorname{Re}s=1/2$. In the case $k=3$, the diagonal form over $\mathbb R$ is investigated by the van der Corput method. For $k=2$, the known result due to Titchmarsh is re-proved by using a variant of the van der Corput method given by Heath-Brown.
Received: 23.11.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 6, Pages 3150–3163
DOI: https://doi.org/10.1023/A:1015432614102
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “The order of the Epstein zeta-function in the critical strip”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 205–225; J. Math. Sci. (New York), 110:6 (2002), 3150–3163
Citation in format AMSBIB
\Bibitem{Fom00}
\by O.~M.~Fomenko
\paper The order of the Epstein zeta-function in the critical strip
\inbook Analytical theory of numbers and theory of functions. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 263
\pages 205--225
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756347}
\zmath{https://zbmath.org/?q=an:1007.11019}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 6
\pages 3150--3163
\crossref{https://doi.org/10.1023/A:1015432614102}
Linking options:
  • https://www.mathnet.ru/eng/znsl1143
  • https://www.mathnet.ru/eng/znsl/v263/p205
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024