Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 193–204 (Mi znsl1142)  

This article is cited in 2 scientific papers (total in 2 papers)

Nonvanishing of automorphic $L$-functions at the center of the critical strip

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (209 kB) Citations (2)
Abstract: Let $S_k(\Gamma_0(N)\chi)$ be the space of holomorphic $\Gamma_0(N)$-cusp forms of integral weight $k$ and of character $\chi(\operatorname{mod}n)$, let $f(z)$ be a newform of the space $S_k(\Gamma_0(N),\chi)$, and let $L_f(s)$ be the corresponding $L$-function. The following statements are proved.
(1) Let $\mathscr F_0$ be the set of all newforms of $S_k(\Gamma_0(p),1)$, let $p$ be prime, and let $k\ge2$ be a constant even number. Then
$$ \sum_{f\in\mathscr F_0:L_f(k/2)\ne0}1\gg\frac p{\log^2p} \quad (p\to\infty). $$
(2) Let $\mathscr F$ be the set of all Hecke eigenforms of the space $S_k(\Gamma_0(1),1)$ and let $k\equiv0\pmod 4$. Then
$$ \sum_{f:\mathscr F_0:L_f(k/2)\ne0}1\gg\frac k{log^2k} \quad (k\to1). $$
Received: 18.10.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 6, Pages 3143–3149
DOI: https://doi.org/10.1023/A:1015480530032
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Nonvanishing of automorphic $L$-functions at the center of the critical strip”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 193–204; J. Math. Sci. (New York), 110:6 (2002), 3143–3149
Citation in format AMSBIB
\Bibitem{Fom00}
\by O.~M.~Fomenko
\paper Nonvanishing of automorphic $L$-functions at the center of the critical strip
\inbook Analytical theory of numbers and theory of functions. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 263
\pages 193--204
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756346}
\zmath{https://zbmath.org/?q=an:1037.11031}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 6
\pages 3143--3149
\crossref{https://doi.org/10.1023/A:1015480530032}
Linking options:
  • https://www.mathnet.ru/eng/znsl1142
  • https://www.mathnet.ru/eng/znsl/v263/p193
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024