|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 193–204
(Mi znsl1142)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Nonvanishing of automorphic $L$-functions at the center of the critical strip
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $S_k(\Gamma_0(N)\chi)$ be the space of holomorphic $\Gamma_0(N)$-cusp forms of integral weight $k$ and of character $\chi(\operatorname{mod}n)$, let $f(z)$ be a newform of the space $S_k(\Gamma_0(N),\chi)$, and let $L_f(s)$ be the corresponding $L$-function. The following statements are proved.
(1) Let $\mathscr F_0$ be the set of all newforms of $S_k(\Gamma_0(p),1)$, let $p$ be prime, and let $k\ge2$ be a constant even number. Then
$$
\sum_{f\in\mathscr F_0:L_f(k/2)\ne0}1\gg\frac p{\log^2p} \quad (p\to\infty).
$$
(2) Let $\mathscr F$ be the set of all Hecke eigenforms of the space $S_k(\Gamma_0(1),1)$ and let $k\equiv0\pmod 4$. Then
$$
\sum_{f:\mathscr F_0:L_f(k/2)\ne0}1\gg\frac k{log^2k} \quad (k\to1).
$$
Received: 18.10.1999
Citation:
O. M. Fomenko, “Nonvanishing of automorphic $L$-functions at the center of the critical strip”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 193–204; J. Math. Sci. (New York), 110:6 (2002), 3143–3149
Linking options:
https://www.mathnet.ru/eng/znsl1142 https://www.mathnet.ru/eng/znsl/v263/p193
|
Statistics & downloads: |
Abstract page: | 206 | Full-text PDF : | 61 |
|