Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 141–156 (Mi znsl1139)  

This article is cited in 1 scientific paper (total in 1 paper)

Estimates for conformal radius and distortion theorems for univalent functions

L. V. Kovalev

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
Full-text PDF (213 kB) Citations (1)
Abstract: A simple proof of the recent result by E. G. Emel'yanov concerning the maximum of the conformal radius $r(D,1)$ for a family of simply connected domains with a fixed value $r(D,0)$ is given. A similar problem is solved for a family of convex domains. Exact estimates for functionals of the form $|g'(w)|/|g(w)|^{\delta}$ are obtained for families of functions inverse to elements of the classes $S$ and $S_m$, where $S=\{f:f\text{ is regular and univalent in the disk }\{z:|z|<1\}\text{ and }f(0)=f'(0)-1=0\}$ and $S_M=\{f\in S:|f(z)|<M\text{ for }|z|<1\}$.
Received: 12.07.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 6, Pages 3111–3120
DOI: https://doi.org/10.1023/A:1015424412285
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: L. V. Kovalev, “Estimates for conformal radius and distortion theorems for univalent functions”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 141–156; J. Math. Sci. (New York), 110:6 (2002), 3111–3120
Citation in format AMSBIB
\Bibitem{Kov00}
\by L.~V.~Kovalev
\paper Estimates for conformal radius and distortion theorems for univalent functions
\inbook Analytical theory of numbers and theory of functions. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 263
\pages 141--156
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756343}
\zmath{https://zbmath.org/?q=an:1002.30014}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 6
\pages 3111--3120
\crossref{https://doi.org/10.1023/A:1015424412285}
Linking options:
  • https://www.mathnet.ru/eng/znsl1139
  • https://www.mathnet.ru/eng/znsl/v263/p141
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024