Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 84–104 (Mi znsl1137)  

This article is cited in 2 scientific papers (total in 2 papers)

The problems on extremal decomposition in spaces of Riemann surfaces

E. G. Emel'yanov

St. Petersburg State University of Economics and Finance
Full-text PDF (260 kB) Citations (2)
Abstract: An extension of a theorem on extremal decomposition of a Riemann surface is obtained. The problem of extremal decomposition is extended from the case of a Riemann surface $\Re$ with a prescribed set $P\subset \Re$ of distinguished points to the case of the Teichmüller space $T_\Re'$ of Riemann surfaces $\widehat{\Re}$ corresponding to $\Re$ under quasiconformal homeomorphisms $f$. For the functional $\mathscr M$ of our problem on extremal decomposition of a surface $\widehat{\Re}$, we consider a function $\mathscr M^*(x)$ expressing the dependence of the extremal value of $\mathscr M$ on a point $x\in T_{\Re'}$ . Differentiation formulas for the function $\mathscr M^*(x)$ are derived. These formulas are different and depend on the genus $g$ of the surface $\mathscr M$. The case where the function $\mathscr M^*(x)$ is pluriharmonic is considered.
Received: 10.11.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 6, Pages 3078–3090
DOI: https://doi.org/10.1023/A:1015420311376
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: E. G. Emel'yanov, “The problems on extremal decomposition in spaces of Riemann surfaces”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 84–104; J. Math. Sci. (New York), 110:6 (2002), 3078–3090
Citation in format AMSBIB
\Bibitem{Eme00}
\by E.~G.~Emel'yanov
\paper The problems on extremal decomposition in spaces of Riemann surfaces
\inbook Analytical theory of numbers and theory of functions. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 263
\pages 84--104
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1137}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756341}
\zmath{https://zbmath.org/?q=an:1009.30024}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 6
\pages 3078--3090
\crossref{https://doi.org/10.1023/A:1015420311376}
Linking options:
  • https://www.mathnet.ru/eng/znsl1137
  • https://www.mathnet.ru/eng/znsl/v263/p84
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024