|
Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 49–69
(Mi znsl1135)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations
B. Dittmara, A. Yu. Solyninb a Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
This paper is connected with recent results of Duren and Pfaltzgraff (J. Anal. Math., 78, 205–218 (1999)). We
consider the problem on the distortion of the hyperbolic Robin capacity $\delta_h(A,\Omega)$ of the boundary set $A\subset\partial\Omega$ under a conformal mapping of a domain $\Omega\subset U$ into the unit disk $U$. It is shown that, for sets consisting of a finite number of boundary arcs or complete boundary components, the inequality
\begin{equation}
\operatorname{cap}_hf(A)\ge\delta_h(A,\Omega)
\tag{1}
\end{equation}
is sharp in the class of conformal mappings $f\colon\Omega\to U$ such that $f(\partial U)=\partial U$. Here $\operatorname{cap}_hf(A)$ is the hyperbolic capacity of a compact set $f(A)\subset U$. We give some examples demonstrating properties of functions which realize the case of equality in relation (1).
Received: 15.02.1999 Revised: 11.10.1999
Citation:
B. Dittmar, A. Yu. Solynin, “Distortion of the hyperbolic Robin capacity under conformal mapping and extremal configurations”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 49–69; J. Math. Sci. (New York), 110:6 (2002), 3058–3069
Linking options:
https://www.mathnet.ru/eng/znsl1135 https://www.mathnet.ru/eng/znsl/v263/p49
|
Statistics & downloads: |
Abstract page: | 189 | Full-text PDF : | 72 |
|