Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2000, Volume 263, Pages 40–48 (Mi znsl1134)  

This article is cited in 2 scientific papers (total in 2 papers)

On the value region of initial coefficients in one class of typically real functions

E. G. Goluzina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (166 kB) Citations (2)
Abstract: Let $T$ be the class of functions satisfying the following conditions: these functions are regular and typically real in the unit disk, they have the form $f(z)=z+c_2z^2+c_3z^3+\dotsc$, and the equality $f(z_1)=w_1$ holds for some fixed $z_1$ and $w_1$ with $\operatorname{Im}z_1\ne0$. We find the set of values of the first two coefficients for functions from this class. Boundary functions for these sets of values are found. Some previous results of the author are supplemented. Boundary functions for the sets of values for the functionals $f'(z_1)$ and $f(z_2)$ in the class $T_1$ are found.
Received: 18.10.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 6, Pages 3052–3057
DOI: https://doi.org/10.1023/A:1015464026397
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: E. G. Goluzina, “On the value region of initial coefficients in one class of typically real functions”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 40–48; J. Math. Sci. (New York), 110:6 (2002), 3052–3057
Citation in format AMSBIB
\Bibitem{Gol00}
\by E.~G.~Goluzina
\paper On the value region of initial coefficients in one class of typically real functions
\inbook Analytical theory of numbers and theory of functions. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 263
\pages 40--48
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756336}
\zmath{https://zbmath.org/?q=an:1004.30011}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 6
\pages 3052--3057
\crossref{https://doi.org/10.1023/A:1015464026397}
Linking options:
  • https://www.mathnet.ru/eng/znsl1134
  • https://www.mathnet.ru/eng/znsl/v263/p40
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024