Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 227–230 (Mi znsl1117)  

This article is cited in 1 scientific paper (total in 1 paper)

The operator rot in an arbitrary region of finite measure

N. D. Filonov

Saint-Petersburg State University
Full-text PDF (132 kB) Citations (1)
Abstract: The definition of the self-adjoint operator rot in an arbitrary region $\Omega\subset\mathbb R^3$ of finite measure is investigated. The spectrum of the operator is discrete. One can prove Weyl's asymptotic formula for the eigenvalues. Under an additional condition concerning the boundary of the region a remainder estimate can be obtained.
Received: 28.06.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 5, Pages 3029–3030
DOI: https://doi.org/10.1023/A:1015303807742
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: N. D. Filonov, “The operator rot in an arbitrary region of finite measure”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 227–230; J. Math. Sci. (New York), 110:5 (2002), 3029–3030
Citation in format AMSBIB
\Bibitem{Fil99}
\by N.~D.~Filonov
\paper The operator rot in an arbitrary region of finite measure
\inbook Investigations on linear operators and function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 262
\pages 227--230
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1734339}
\zmath{https://zbmath.org/?q=an:1018.47034}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 5
\pages 3029--3030
\crossref{https://doi.org/10.1023/A:1015303807742}
Linking options:
  • https://www.mathnet.ru/eng/znsl1117
  • https://www.mathnet.ru/eng/znsl/v262/p227
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :117
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024