Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 214–222 (Mi znsl1115)  

On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of a Fucshian group without parabolic elements

O. L. Semenova

Saint-Petersburg State University
Abstract: Let $\Lambda$ be the limit set of a finitely generated Fucshian group of the second kind. If the group does not contain parabolic elements, then $\Lambda$ is porous and the function $\log(\operatorname{dist}(X,\Lambda))$ belongs to the class BMO.
Received: 02.06.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 5, Pages 3022–3026
DOI: https://doi.org/10.1023/A:1015399606833
Bibliographic databases:
UDC: 517.544
Language: Russian
Citation: O. L. Semenova, “On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of a Fucshian group without parabolic elements”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 214–222; J. Math. Sci. (New York), 110:5 (2002), 3022–3026
Citation in format AMSBIB
\Bibitem{Sem99}
\by O.~L.~Semenova
\paper On the porosity of the limit set and the boundedness of the oscillation of the function $\log(\operatorname{dist}(X,\Lambda))$ in the case of a~Fucshian group without parabolic elements
\inbook Investigations on linear operators and function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 262
\pages 214--222
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1734337}
\zmath{https://zbmath.org/?q=an:0999.30027}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 5
\pages 3022--3026
\crossref{https://doi.org/10.1023/A:1015399606833}
Linking options:
  • https://www.mathnet.ru/eng/znsl1115
  • https://www.mathnet.ru/eng/znsl/v262/p214
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024