Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 172–184 (Mi znsl1111)  

A class of functions on a disjoint collection of segments

K. G. Mezhevitcha, N. A. Shirokovb

a Herzen State Pedagogical University of Russia
b Saint-Petersburg State Electrotechnical University
Abstract: Let $E=\bigcup\limits^m_{k=1}S_k$, where $S_k$ are disjoint segments, and let $\{\alpha_k\}$ be a collection of positive numbers, $0<\alpha_k<1$. We describe a class of functions $f$ on $E$ that admit approximation by polynomials of degree $\le n$ with the rate $\frac1{n^{\alpha_k}}$ on $S_k$.
Received: 19.04.1999
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: K. G. Mezhevitch, N. A. Shirokov, “A class of functions on a disjoint collection of segments”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 172–184
Citation in format AMSBIB
\Bibitem{MezShi99}
\by K.~G.~Mezhevitch, N.~A.~Shirokov
\paper A class of functions on a disjoint collection of segments
\inbook Investigations on linear operators and function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 262
\pages 172--184
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1734333}
Linking options:
  • https://www.mathnet.ru/eng/znsl1111
  • https://www.mathnet.ru/eng/znsl/v262/p172
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024