|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 172–184
(Mi znsl1111)
|
|
|
|
A class of functions on a disjoint collection of segments
K. G. Mezhevitcha, N. A. Shirokovb a Herzen State Pedagogical University of Russia
b Saint-Petersburg State Electrotechnical University
Abstract:
Let $E=\bigcup\limits^m_{k=1}S_k$, where $S_k$ are disjoint segments, and let $\{\alpha_k\}$ be a collection of positive numbers, $0<\alpha_k<1$. We describe a class of functions $f$ on $E$
that admit approximation by polynomials of degree $\le n$ with the rate $\frac1{n^{\alpha_k}}$ on $S_k$.
Received: 19.04.1999
Citation:
K. G. Mezhevitch, N. A. Shirokov, “A class of functions on a disjoint collection of segments”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 172–184
Linking options:
https://www.mathnet.ru/eng/znsl1111 https://www.mathnet.ru/eng/znsl/v262/p172
|
Statistics & downloads: |
Abstract page: | 171 | Full-text PDF : | 56 |
|