Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 90–126 (Mi znsl1107)  

Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum

G. M. Gubreev, E. I. Olefir

South Ukrainian State K. D. Ushynsky Pedagogical University
Abstract: For two families of functions generated by a system of $n$ scalar Muckenhoupt weights, criteria are obtained for being unconditional basic sequences. From the point of view of the spectral operator theory, the problem is reduced to analyzing the structure of $n$-dimensional perturbations of the integration operator. With the help of weighted estimates for the Hilbert transform in the spaces of vector-functions, an operator is constructed that transforms the functions of the given families into vector-valued rational functions. The concept of Carleson series is used for solving the problem of being an unconditional basis.
Received: 28.06.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 5, Pages 2955–2978
DOI: https://doi.org/10.1023/A:1015335220037
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: G. M. Gubreev, E. I. Olefir, “Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 90–126; J. Math. Sci. (New York), 110:5 (2002), 2955–2978
Citation in format AMSBIB
\Bibitem{GubOle99}
\by G.~M.~Gubreev, E.~I.~Olefir
\paper Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum
\inbook Investigations on linear operators and function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 262
\pages 90--126
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1734329}
\zmath{https://zbmath.org/?q=an:1004.46021}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 5
\pages 2955--2978
\crossref{https://doi.org/10.1023/A:1015335220037}
Linking options:
  • https://www.mathnet.ru/eng/znsl1107
  • https://www.mathnet.ru/eng/znsl/v262/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024