Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 71–89 (Mi znsl1106)  

The limit of the Lebesgue constants of summation methods of Fourier–Legendre series determined by a multiplier function

O. L. Vinogradov

St. Petersburg State University, Department of Mathematics and Mechanics
Abstract: In what follows, $C[-1,1]$ is the space of continuous functions $f\colon[-1,1]\to\mathbb R$ with uniform norm, $P_k$ are the Legendre polynomials such that $P_k(1)=1$, $J_0$ is the Bessel function of zero index. We consider sequences of linear operators (summation methods) $U_n\colon C[-1,1]\to C[-1,1]$ determined by a multiplier function $\varphi$:
$$ U_nf(y)=\int\limits_{-1}^1f(x)\sum_{k=0}^{\infty}\varphi(k/n)(k+1/2)P_k(y)P_k(x)\,dx. $$
The norms $\mathfrak L_n$ of the operators $U_n$ are called the Lebesgue constants of the summation method. The main result is the following.
If $\varphi$ is continuous on $[0,+\infty)$,
\begin{gather*} \sum_{k=0}^{\infty}\varphi^2(k/n)(k+1/2)<\infty \text{ for each </nomathmode><mathmode>$n\in\mathbb N$,} \qquad \int\limits_0^\infty\varphi^2(x)x dx<\infty;
B\varphi(z)=z\int\limits_0^\infty\varphi(x)xJ_0(zx) dx \end{gather*}
</mathmode><nomathmode> is the Fourier–Bessel transformation of $\varphi$, and the function $z^{q-1}|B\varphi(z)|^q$ is summable on $[0,+\infty)$ with some $q>1$, then
$$ \lim_{n\to\infty}\mathfrak L_n=\int\limits_0^\infty|B\varphi|. $$
Received: 06.01.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 5, Pages 2944–2954
DOI: https://doi.org/10.1023/A:1015383103199
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “The limit of the Lebesgue constants of summation methods of Fourier–Legendre series determined by a multiplier function”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 71–89; J. Math. Sci. (New York), 110:5 (2002), 2944–2954
Citation in format AMSBIB
\Bibitem{Vin99}
\by O.~L.~Vinogradov
\paper The limit of the Lebesgue constants of summation methods of Fourier--Legendre series determined by a multiplier function
\inbook Investigations on linear operators and function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 262
\pages 71--89
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1734328}
\zmath{https://zbmath.org/?q=an:0997.42015}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 5
\pages 2944--2954
\crossref{https://doi.org/10.1023/A:1015383103199}
Linking options:
  • https://www.mathnet.ru/eng/znsl1106
  • https://www.mathnet.ru/eng/znsl/v262/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024