|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 71–89
(Mi znsl1106)
|
|
|
|
The limit of the Lebesgue constants of summation methods of Fourier–Legendre series determined by a multiplier function
O. L. Vinogradov St. Petersburg State University, Department of Mathematics and Mechanics
Abstract:
In what follows, $C[-1,1]$ is the space of continuous functions $f\colon[-1,1]\to\mathbb R$ with uniform norm,
$P_k$ are the Legendre polynomials such that $P_k(1)=1$, $J_0$ is the Bessel function of zero index.
We consider sequences of linear operators (summation methods) $U_n\colon C[-1,1]\to C[-1,1]$ determined by a multiplier function $\varphi$:
$$
U_nf(y)=\int\limits_{-1}^1f(x)\sum_{k=0}^{\infty}\varphi(k/n)(k+1/2)P_k(y)P_k(x)\,dx.
$$
The norms $\mathfrak L_n$ of the operators $U_n$ are called the Lebesgue constants of the summation method. The main result is the following.
If $\varphi$ is continuous on $[0,+\infty)$,
\begin{gather*}
\sum_{k=0}^{\infty}\varphi^2(k/n)(k+1/2)<\infty \text{ for each </nomathmode><mathmode>$n\in\mathbb N$,} \qquad \int\limits_0^\infty\varphi^2(x)x dx<\infty;
B\varphi(z)=z\int\limits_0^\infty\varphi(x)xJ_0(zx) dx
\end{gather*} </mathmode><nomathmode>
is the Fourier–Bessel transformation of $\varphi$, and the function $z^{q-1}|B\varphi(z)|^q$ is summable on $[0,+\infty)$ with some $q>1$, then
$$
\lim_{n\to\infty}\mathfrak L_n=\int\limits_0^\infty|B\varphi|.
$$
Received: 06.01.1999
Citation:
O. L. Vinogradov, “The limit of the Lebesgue constants of summation methods of Fourier–Legendre series determined by a multiplier function”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 71–89; J. Math. Sci. (New York), 110:5 (2002), 2944–2954
Linking options:
https://www.mathnet.ru/eng/znsl1106 https://www.mathnet.ru/eng/znsl/v262/p71
|
Statistics & downloads: |
Abstract page: | 373 | Full-text PDF : | 84 |
|