Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 262, Pages 5–48 (Mi znsl1104)  

This article is cited in 34 scientific papers (total in 34 papers)

On imbedding theorems for coinvariant subspaces of the shift operator. II

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: For every inner function $\Theta$, we put $\Theta^*(H^2)\overset{\text{def}}=H^2\ominus\Theta H^2$, and $\Theta^*(H^p)\overset{\text{def}}=\operatorname{clos}_{H^p}(H^p\cap\Theta^*(H^2))$ for $p\ne 2$. Denote $\mathscr C_p(\Theta)=\{\mu\in C(\overline{\mathbb D}):\Theta^*(H^p)\subset L^p(|\mu|)\}$. An inner function $\Theta$ is said to be one-component if the set $\{z\in\mathbb D:|\Theta(z)|<\varepsilon\}$ is connected for some $\varepsilon\in(0,1)$. A series of criteria for that are obtained. For example, $\Theta$ is one-component if and only if $\mathscr C_p(\Theta)$ does not depend on $p\in(0,+\infty)$. Moreover, there is a criterion in terms of the reproducing kernel of $\Theta^*(H^2)$. The set $\mathscr C_p(\Theta)$ is described in the case where $\Theta$ is a Blaschke product of special form. This description implies that the set of all $p$ such that a given measure $\mu$ belongs to $\mathscr C_p(\Theta)$ may have any finite or infinite number of connected component. The following examples of interpolating Blaschke products $\Theta$ and positive measures $\mu$ are constructed: (1) $\Theta^*(H^1)\subset L^1(\mu)$ and $\Theta^*(H^2)\subset L^2(\mu)$ but $\Theta^*(H^p)\not\subset L^p(\mu)$ for any $p\in(1,2)$; (2) $\Theta^*(H^p)\subset L^p(\mu)$ if and only if $p=\frac1n$, where $n$ is a positive integer; (3) $\Theta^*(H^p)\subset L^p(\mu)$ if and only if $p\ne\frac1n$, where $n$ is a positive integer.
Received: 11.05.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 5, Pages 2907–2929
DOI: https://doi.org/10.1023/A:1015379002290
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. B. Aleksandrov, “On imbedding theorems for coinvariant subspaces of the shift operator. II”, Investigations on linear operators and function theory. Part 27, Zap. Nauchn. Sem. POMI, 262, POMI, St. Petersburg, 1999, 5–48; J. Math. Sci. (New York), 110:5 (2002), 2907–2929
Citation in format AMSBIB
\Bibitem{Ale99}
\by A.~B.~Aleksandrov
\paper On imbedding theorems for coinvariant subspaces of the shift operator.~II
\inbook Investigations on linear operators and function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 262
\pages 5--48
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1734326}
\zmath{https://zbmath.org/?q=an:1060.30043}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 5
\pages 2907--2929
\crossref{https://doi.org/10.1023/A:1015379002290}
Linking options:
  • https://www.mathnet.ru/eng/znsl1104
  • https://www.mathnet.ru/eng/znsl/v262/p5
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:431
    Full-text PDF :139
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024