Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 240–265 (Mi znsl1102)  

This article is cited in 16 scientific papers (total in 16 papers)

The vector space of the conformal Killing forms on a Riemannian manifold

S. E. Stepanov

Vladimir State Pedagogical University
Abstract: The concept of a conformal Killing $p$-form in a Riemannian manifold of dimension $m>p\ge1$ was introduced by S. Tashibana and T. Kashiwada. They generalized some results of a conformal Killing vector field to a conformal Killing $p$-form.
In this paper we define a conformal Killing $p$-form with the help of natural differental operators on Riemannian manifolds and representations of orthogonal groups. Then we consider the vector space $\mathbf T^p(M,\mathbf R)$ of conformal Killing $p$-forms and it's two subspaces $\mathbf K^p(M,\mathbf R)$ of coclosed conformal Killing $p$-forms and $\mathbf P^p(M,\mathbf R)$ of closed conformal Killing $p$-forms. In particular, we generalize some local and global results of Tashibana and Kashiwada about a conformal Killing and Killing $p$-forms.
In the end of the paper we give an interesting application to Hermitian geometry.
Received: 29.03.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 4, Pages 2892–2906
DOI: https://doi.org/10.1023/A:1015327018220
Bibliographic databases:
UDC: 514.763
Language: Russian
Citation: S. E. Stepanov, “The vector space of the conformal Killing forms on a Riemannian manifold”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 240–265; J. Math. Sci. (New York), 110:4 (2002), 2892–2906
Citation in format AMSBIB
\Bibitem{Ste99}
\by S.~E.~Stepanov
\paper The vector space of the conformal Killing forms on a Riemannian manifold
\inbook Geometry and topology. Part~4
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 261
\pages 240--265
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1758432}
\zmath{https://zbmath.org/?q=an:1022.53030}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 4
\pages 2892--2906
\crossref{https://doi.org/10.1023/A:1015327018220}
Linking options:
  • https://www.mathnet.ru/eng/znsl1102
  • https://www.mathnet.ru/eng/znsl/v261/p240
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024