|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 222–228
(Mi znsl1101)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Order of function on the Bruschlinsky group
S. S. Podkorytov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
For an arbitrary function $F$ defined on the group of homotopy classes of mappings of a finite polyheder $X$ to the circle and taking values in an Abelian group $Q$, the notion of order is defined. The order $\operatorname{ord}F$ is compared with the algebraic degree of $F$. It is proved that $\operatorname{ord} F\le\operatorname{deg}F$ and $\operatorname{deg}F\le\operatorname{dim}X\cdot\operatorname{ord}F$. The inequality $\operatorname{ord}F\ge\operatorname{deg}F$ is proved in the case where $Q$ is torsion-free or $\operatorname{ord}F\le1$.
Received: 31.05.1999
Citation:
S. S. Podkorytov, “Order of function on the Bruschlinsky group”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 222–228; J. Math. Sci. (New York), 110:4 (2002), 2882–2885
Linking options:
https://www.mathnet.ru/eng/znsl1101 https://www.mathnet.ru/eng/znsl/v261/p222
|
Statistics & downloads: |
Abstract page: | 222 | Full-text PDF : | 100 |
|