Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 343, Pages 33–53 (Mi znsl110)  

This article is cited in 4 scientific papers (total in 4 papers)

Subgroups of $\operatorname{SL}_n$ over a semilocal ring

N. A. Vavilov

Saint-Petersburg State University
Full-text PDF (258 kB) Citations (4)
References:
Abstract: In the present paper we prove that if $R$ is a commutative semi-local ring all of whose residue fields contain at least $3n+2$ elements, then for every subgroup $H$ of the special linear group $\operatorname{SL}(n,R)$, $n\ge 3$, containing the diagonal subgroup $\operatorname{SD}(n,R)$ there exists a unique $D$-net $\sigma$ of ideals $R$ such that $\mathrm{G}(\sigma)\le H\le N_{\mathrm{G}}(\sigma)$. In the works by Z. I. Borewicz and the author similar results were established for $\operatorname{GL}_n$ over semi-local rings and for $\operatorname{SL}_n$ over fields. Later I. Hamdan obtained similar description for a very special case of uniserial rings.
Received: 19.10.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 147, Issue 5, Pages 6995–7004
DOI: https://doi.org/10.1007/s10958-007-0525-3
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. A. Vavilov, “Subgroups of $\operatorname{SL}_n$ over a semilocal ring”, Problems in the theory of representations of algebras and groups. Part 15, Zap. Nauchn. Sem. POMI, 343, POMI, St. Petersburg, 2007, 33–53; J. Math. Sci. (N. Y.), 147:5 (2007), 6995–7004
Citation in format AMSBIB
\Bibitem{Vav07}
\by N.~A.~Vavilov
\paper Subgroups of $\operatorname{SL}_n$ over a semilocal ring
\inbook Problems in the theory of representations of algebras and groups. Part~15
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 343
\pages 33--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2469412}
\elib{https://elibrary.ru/item.asp?id=9595465}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 147
\issue 5
\pages 6995--7004
\crossref{https://doi.org/10.1007/s10958-007-0525-3}
\elib{https://elibrary.ru/item.asp?id=13545992}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36148993298}
Linking options:
  • https://www.mathnet.ru/eng/znsl110
  • https://www.mathnet.ru/eng/znsl/v343/p33
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :109
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024