|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 194–197
(Mi znsl1097)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On one affine-invariant metric on the class of convex plane compacts
V. V. Makeev Saint-Petersburg State University
Abstract:
Theorem. For every plane convex compacts $K_1,K_2\subset\mathbb R^2$ there exist an affine transformations $T_1$, $T_2$ such that $T_1(K_1)\subset K_2\subset T_2(K_1)$ and $S(T_2(K_1))<111/16 S(T_1(K_1))$, where $S(K)$ means the square of a plane set $K\subset\mathbb R^2$.
Received: 24.04.1999
Citation:
V. V. Makeev, “On one affine-invariant metric on the class of convex plane compacts”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 194–197; J. Math. Sci. (New York), 110:4 (2002), 2865–2867
Linking options:
https://www.mathnet.ru/eng/znsl1097 https://www.mathnet.ru/eng/znsl/v261/p194
|
Statistics & downloads: |
Abstract page: | 118 | Full-text PDF : | 44 |
|