|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 119–124
(Mi znsl1092)
|
|
|
|
The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$
S. E. Kozlov, M. Yu. Nikanorova Saint-Petersburg State University
Abstract:
In the $6$-dimensional space $\Lambda_2(\mathbb R^4)$ of bivectors a Lie product is introduced analogous to the standard vector product in $\mathbb R^2$. The Lie algebra constructed is proved to be isomorphic to the Lie algebra of the group of orthogonal transformations $O(\mathbb R^4)$. This isomorphism of Lie algebras is
a canonical isometry of the space of antisymmetric operators in $\mathbb R^4$ onto $\Lambda_2(\mathbb R^4)$.
Received: 18.06.1999
Citation:
S. E. Kozlov, M. Yu. Nikanorova, “The geometry of the Lie algebra of the orthogonal group $O(\mathbb R^4)$”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 119–124; J. Math. Sci. (New York), 110:4 (2002), 2820–2823
Linking options:
https://www.mathnet.ru/eng/znsl1092 https://www.mathnet.ru/eng/znsl/v261/p119
|
Statistics & downloads: |
Abstract page: | 174 | Full-text PDF : | 59 |
|