|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 102–118
(Mi znsl1091)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Stationary values of sectional curvature in Grassmanian manifolds of bivectors
S. E. Kozlov Saint-Petersburg State University
Abstract:
In the Grassmanian manifold $G^+_{2,n}$ of bivectors $(n\ge4)$ the curvature $K(\sigma)$ of the section on direction of a flat area $\sigma$ takes values on the range from 0 to 2. All stationary values $a$ of the function $K(\sigma)$ such that the gradient $\nabla K\big|_{\sigma=\sigma_0}=0$ for at least one $\sigma_0\in K^{-1}(a)$ are found. Those values are $\{0,1,2\}$ for $n=4$, $\{0,1/5,1,2\}$ for $n=5$, $\{0,1/5,1/2,1,2\}$ for $n\ge6$.
Received: 03.06.1999
Citation:
S. E. Kozlov, “Stationary values of sectional curvature in Grassmanian manifolds of bivectors”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 102–118; J. Math. Sci. (New York), 110:4 (2002), 2810–2819
Linking options:
https://www.mathnet.ru/eng/znsl1091 https://www.mathnet.ru/eng/znsl/v261/p102
|
Statistics & downloads: |
Abstract page: | 163 | Full-text PDF : | 50 |
|