|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 66–75
(Mi znsl1089)
|
|
|
|
On the convex hull of several compacta
A. V. Evdokimovab, V. A. Zalgallerb a Saint-Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $K_0,K_1,\dots,K_m$ be nonempty compact sets in $\mathbb R^n$. Then the family of convex hulls $\operatorname{conv}\{\bigcup^m_{i=0}(K_i+r_i)\}$, $r_0=0$, is a convex family of sets, parametrized by
$\rho=(r_1,\dots,r_m)\in\mathbb R^{nm}$. In case $m=1$, the volume $\operatorname{Vol\,conv}(K_0\cup(K_1+r))$ is a convex function of $r\in\mathbb R^n$.
Received: 08.02.1999
Citation:
A. V. Evdokimov, V. A. Zalgaller, “On the convex hull of several compacta”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 66–75; J. Math. Sci. (New York), 110:4 (2002), 2789–2794
Linking options:
https://www.mathnet.ru/eng/znsl1089 https://www.mathnet.ru/eng/znsl/v261/p66
|
Statistics & downloads: |
Abstract page: | 163 | Full-text PDF : | 56 |
|