Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 40–42 (Mi znsl1086)  

On sets with prescribed number of power invariants

V. V. Makeev

Saint-Petersburg State University
Abstract: Let $A_1,\dots,A_n$ be points in $\mathbb R^d$, $O\in\mathbb R^d$ the fixed point, $p$ the positive integer and $\lambda_1,\dots,\lambda_n$ positive numbers. If the sum $s_p(M)=\sum^n_{i=1}\lambda_i|A_iM|^{2p}$ does not depend on the position of $M$ on the sphere with center at point $O$, then the point system $\{A_1,\dots,A_n\}$ has an invariant of degree $p$ with weight system $\{\lambda,\dots,\lambda_n\}$.
Theorem. {\it For given positive integers $d$ and $N$ there exists a point system $\{A_1,\dots,A_n\}\subset\mathbb R^d$ with invariants of degree $p\le N$ with some common weight system $\{\lambda_1,\dots,\lambda_n\}$}.
Received: 18.03.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 110, Issue 4, Pages 2774–2775
DOI: https://doi.org/10.1023/A:1015342026880
Bibliographic databases:
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, “On sets with prescribed number of power invariants”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 40–42; J. Math. Sci. (New York), 110:4 (2002), 2774–2775
Citation in format AMSBIB
\Bibitem{Mak99}
\by V.~V.~Makeev
\paper On sets with prescribed number of power invariants
\inbook Geometry and topology. Part~4
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 261
\pages 40--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1758415}
\zmath{https://zbmath.org/?q=an:1003.51011}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 4
\pages 2774--2775
\crossref{https://doi.org/10.1023/A:1015342026880}
Linking options:
  • https://www.mathnet.ru/eng/znsl1086
  • https://www.mathnet.ru/eng/znsl/v261/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024