|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 261, Pages 7–30
(Mi znsl1084)
|
|
|
|
Power invariants of certain point sets
Yu. I. Babenkoa, V. A. Zalgallerb a Russian Research Centre "Applied Chemistry"
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We consider point sets $A_1,\dots,A_n$ in the space $\mathbb R^d$, $d\ge2$, which have center of gravity at zero and, for a certain set of even exponents $2,4,\dots,2p$, “power invariants” $I_k$ in the following sense. For the sphere $S^{d-1}(R)$ with center at zero and radius $R$ and for a point $M\in S^{d-1}(R)$, the sum $I_k(M)=\sum^n_{i=1}|MA_i|^{2k}$ does not depend on the position of $M$ on the sphere $S^{d-1}(R)$ for $k=1,\dots,p$.
Received: 26.01.1999
Citation:
Yu. I. Babenko, V. A. Zalgaller, “Power invariants of certain point sets”, Geometry and topology. Part 4, Zap. Nauchn. Sem. POMI, 261, POMI, St. Petersburg, 1999, 7–30; J. Math. Sci. (New York), 110:4 (2002), 2755–2768
Linking options:
https://www.mathnet.ru/eng/znsl1084 https://www.mathnet.ru/eng/znsl/v261/p7
|
Statistics & downloads: |
Abstract page: | 196 | Full-text PDF : | 141 |
|