|
Zapiski Nauchnykh Seminarov POMI, 1999, Volume 260, Pages 250–257
(Mi znsl1078)
|
|
|
|
A counterexample to the conjecture on monotonicity of an integral with respect to Gaussian measure
A. V. Sudakov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
It is shown that for the Kantorovich metrics $\varkappa$ on probability measures for centered Gaussian measures $\gamma$ defined on Euclidean space $E$ of random variables $X$ the integral
$$
I(\gamma)=\iint\limits_{E\oplus E}\varkappa(\mathscr L(X_1),\mathscr L(X_2))(\gamma\otimes\gamma)\,d(X_1,X_2),
$$
is not always monotonic in $\gamma$.
Received: 20.12.1999
Citation:
A. V. Sudakov, “A counterexample to the conjecture on monotonicity of an integral with respect to Gaussian measure”, Probability and statistics. Part 3, Zap. Nauchn. Sem. POMI, 260, POMI, St. Petersburg, 1999, 250–257; J. Math. Sci. (New York), 109:6 (2002), 2219–2224
Linking options:
https://www.mathnet.ru/eng/znsl1078 https://www.mathnet.ru/eng/znsl/v260/p250
|
Statistics & downloads: |
Abstract page: | 194 | Full-text PDF : | 60 |
|