Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 260, Pages 103–118 (Mi znsl1068)  

This article is cited in 1 scientific paper (total in 1 paper)

Double extensions of dynamical systems and a construction of mixing filtrations. II. Quasihyperbolic toral automorphisms

M. I. Gordin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (240 kB) Citations (1)
Abstract: Let $T$ be an automorphism (an invertible measure preserving transformation) of a probability space $(X,\mathscr F,\mu)$ and let $U$ be a unitary operator on $L_2(X)=L_2(X,\mathscr F,\mu)$ defined by $Uf=f\circ T$. Let $A_s$ and $A_u$ be generators of symmetric Markov transition semigroups acting on $L_2$. $A_s$ and $A_u$ are supposed to satisfy the relations
$$ U^{-1} A_s U=\theta^{-1} A_s,U^{-1} A_u U=\theta A_u $$
for some $\theta >1$. A nonnegative selfadjoint operator $A$ on $L_2$ with the properties $ UA=AU$, $ A_u+A_s\ge A$ is said to be a $T$-invariant minorant for $(A_u, A_s)$. Supposing that $A_u$ and $A_s$ commute, certain assumptions on a function $f \in L_2$ in terms of such a minorant are proposed under which the sequence $(f\circ T^k,k\in\mathbb Z)$ satisfies the functional form of the Central Limit Theorem and the Law of the Iterated Logarithm. A special case of these assumptions was considered in an earlier paper by the author. Quasihyperbolic toral automorphisms are considered as an application.
Received: 22.02.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 109, Issue 6, Pages 2103–2114
DOI: https://doi.org/10.1023/A:1014573115086
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: M. I. Gordin, “Double extensions of dynamical systems and a construction of mixing filtrations. II. Quasihyperbolic toral automorphisms”, Probability and statistics. Part 3, Zap. Nauchn. Sem. POMI, 260, POMI, St. Petersburg, 1999, 103–118; J. Math. Sci. (New York), 109:6 (2002), 2103–2114
Citation in format AMSBIB
\Bibitem{Gor99}
\by M.~I.~Gordin
\paper Double extensions of dynamical systems and a construction of mixing filtrations.~II. Quasihyperbolic
toral automorphisms
\inbook Probability and statistics. Part~3
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 260
\pages 103--118
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1759157}
\zmath{https://zbmath.org/?q=an:1163.37300}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 109
\issue 6
\pages 2103--2114
\crossref{https://doi.org/10.1023/A:1014573115086}
Linking options:
  • https://www.mathnet.ru/eng/znsl1068
  • https://www.mathnet.ru/eng/znsl/v260/p103
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024