Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 259, Pages 89–121 (Mi znsl1052)  

This article is cited in 31 scientific papers (total in 31 papers)

$C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem

P. Kaplitský, J. Málek, J. Stará

Charles University
Abstract: We prove the global existence of $C^{1,\alpha}$-solutions to a system of nonlinear equations describing steady planar motions of a certain class of non-Newtonian fluids including in particular various variants of the power-law models. We study the Dirichlet problem. The nonlinear operator has a $p$-potential structure. If $p>3/2$ we construct global $C^{1,\alpha}$-solutions up to the boundary, while for $p>6/5$ solutions with interior $C^{1,\alpha}$-regularity are obtained. A proof of global higher regularity is outlined. Uniqueness of $C^{1,\alpha}$-solutions within the class of weak solutions is also proved assuming the smallness of data.
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 109, Issue 5, Pages 1867–1893
DOI: https://doi.org/10.1023/A:1014440207817
Bibliographic databases:
UDC: 517.9
Language: English
Citation: P. Kaplitský, J. Málek, J. Stará, “$C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem”, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Zap. Nauchn. Sem. POMI, 259, POMI, St. Petersburg, 1999, 89–121; J. Math. Sci. (New York), 109:5 (2002), 1867–1893
Citation in format AMSBIB
\Bibitem{KapMalSta99}
\by P.~Kaplitsk\'y, J.~M\'alek, J.~Star\'a
\paper $C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 259
\pages 89--121
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1754359}
\zmath{https://zbmath.org/?q=an:0978.35046}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 109
\issue 5
\pages 1867--1893
\crossref{https://doi.org/10.1023/A:1014440207817}
Linking options:
  • https://www.mathnet.ru/eng/znsl1052
  • https://www.mathnet.ru/eng/znsl/v259/p89
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :131
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024