Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 259, Pages 46–66 (Mi znsl1050)  

This article is cited in 10 scientific papers (total in 10 papers)

Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth

M. Fuchs, M. Bildhauer

Saarland University
Abstract: The minimum problem $\int_{\Omega}f(\nabla u)dx\longrightarrow\min$ among mappings $u:\mathbb R^n\supset\Omega\to\mathbb R^N$ with prescribed Dirichlet boundary data and for integrands $f$ of linear growth in general fails to have solutions in the Sobolev space $W^1_1$. We therefore concentrate on the dual variational problem which admits a unique maximizer $\sigma$ and prove partial Hölder continuity of $\sigma$. Moreover, we study smoothness properties of $L^1$-limits of minimizing sequences of the original problem.
Received: 05.06.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 109, Issue 5, Pages 1835–1850
DOI: https://doi.org/10.1023/A:1014436106908
Bibliographic databases:
UDC: 517.9
Language: English
Citation: M. Fuchs, M. Bildhauer, “Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth”, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Zap. Nauchn. Sem. POMI, 259, POMI, St. Petersburg, 1999, 46–66; J. Math. Sci. (New York), 109:5 (2002), 1835–1850
Citation in format AMSBIB
\Bibitem{FucBil99}
\by M.~Fuchs, M.~Bildhauer
\paper Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 259
\pages 46--66
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1754357}
\zmath{https://zbmath.org/?q=an:0977.49025}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 109
\issue 5
\pages 1835--1850
\crossref{https://doi.org/10.1023/A:1014436106908}
Linking options:
  • https://www.mathnet.ru/eng/znsl1050
  • https://www.mathnet.ru/eng/znsl/v259/p46
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024