|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 344, Pages 174–189
(Mi znsl105)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Estimates for the number of rational points on convex curves and surfaces
F. V. Petrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $\Gamma\subset \mathbb R^d$ be a bounded strictly convex surface. Denote by $k_n(\Gamma)$ the number of points in the set $\Gamma\cap\frac1n\mathbb Z^d$. We prove that
$\liminf k_n(\Gamma)/n^{d-2}<\infty$ for $d\ge 3$ and $\liminf k_n(\Gamma)/\log n<\infty$ for $d=2$.
Received: 04.05.2007
Citation:
F. V. Petrov, “Estimates for the number of rational points on convex curves and surfaces”, Representation theory, dynamical systems, combinatorial methods. Part XV, Zap. Nauchn. Sem. POMI, 344, POMI, St. Petersburg, 2007, 174–189; J. Math. Sci. (N. Y.), 147:6 (2007), 7218–7226
Linking options:
https://www.mathnet.ru/eng/znsl105 https://www.mathnet.ru/eng/znsl/v344/p174
|
Statistics & downloads: |
Abstract page: | 295 | Full-text PDF : | 104 | References: | 39 |
|