Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 258, Pages 208–230 (Mi znsl1039)  

This article is cited in 2 scientific papers (total in 2 papers)

Symmetry analysis of differential equations using MATHLIE

G. Baumann

Institute of Theoretical Physics, University of Ulm
Full-text PDF (301 kB) Citations (2)
Abstract: This article discusses a general procedure to solve ordinary differential equations of arbitrary order. The method used is based on symmetries of differential equation. The known symmetries allow the derivation of first integrals of the equation. The knowledge of at least $r$ symmetries of an ordinary differential equation of order $n$ with $r\ge n$ is the basis for deriving the solution. Our aim is to show that Lie's theory is instrumental for solving an ordinary differential equation of higher-order.
Received: 06.10.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 108, Issue 6, Pages 1052–1069
DOI: https://doi.org/10.1023/A:1013548607060
Bibliographic databases:
UDC: 517.91+681.3
Language: English
Citation: G. Baumann, “Symmetry analysis of differential equations using MATHLIE”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IV, Zap. Nauchn. Sem. POMI, 258, POMI, St. Petersburg, 1999, 208–230; J. Math. Sci. (New York), 108:6 (2002), 1052–1069
Citation in format AMSBIB
\Bibitem{Bau99}
\by G.~Baumann
\paper Symmetry analysis of differential equations using MATHLIE
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~IV
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 258
\pages 208--230
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1755840}
\zmath{https://zbmath.org/?q=an:1006.34031}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 108
\issue 6
\pages 1052--1069
\crossref{https://doi.org/10.1023/A:1013548607060}
Linking options:
  • https://www.mathnet.ru/eng/znsl1039
  • https://www.mathnet.ru/eng/znsl/v258/p208
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :248
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024