Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 299, Pages 30–37 (Mi znsl1030)  

A remark on the $sl_2$ approximation of the Kontsevich integral of the unknot

A. N. Varchenkoa, S. Tyurinab

a Department of Mathematics, University of North Carolina at Chapel Hill
b Max Planck Institute for Mathematics
References:
Abstract: The Kontsevich integral of a knot $K$ is a sum $I(K)=1+\sum_{n=1}^\infty h^n\sum_{D\in A_n}a_D D$ over all chord diagrams with suitable coefficients. Here $A_n$ is the space of chord diagrams with $n$ chords. A simple explicit formula for the coefficients $a_D$ is not known even for the unknot. Let $E_1,E_2,\dots$ be elements of $A=\bigoplus_{n}A_n$. Say that the sum $I'(K)=1+\sum_{n=1}^\infty h^n E_n$ is an $sl_2$ approximation of the Kontsevich integral if the values of the $sl_2$ weight system $W_{sl_2}$ on both sums are equal: $W_{sl_2}(I(K))=W_{sl_2}(I'(K))$.
For any natural n fix points $a_1,\dots,a_2n$ on a circle. For any permutation $\sigma\in S_{2n}$ of $2n$ elements, one defines the chord diagram $D(\sigma)$ with $n$ chords as the diagram with chords formed by pairs $(a_{\sigma(2i-1)} and a_{\sigma(2i)})$, $i=1,\dots,n$. It is shown that
$$ 1+\sum_{n=1}^\infty\frac{h^{2n}}{2^n(2n)!(2n+1)!}\sum_{\sigma\in S_{2n}}D(\sigma) $$
is an $sl_2$ approximation of the Kontsevich integral of the unknot.
Received: 19.11.2001
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 131, Issue 1, Pages 5270–5274
DOI: https://doi.org/10.1007/s10958-005-0399-1
Bibliographic databases:
UDC: 515.162.8+515.164.634
Language: Russian
Citation: A. N. Varchenko, S. Tyurina, “A remark on the $sl_2$ approximation of the Kontsevich integral of the unknot”, Geometry and topology. Part 8, Zap. Nauchn. Sem. POMI, 299, POMI, St. Petersburg, 2003, 30–37; J. Math. Sci. (N. Y.), 131:1 (2005), 5270–5274
Citation in format AMSBIB
\Bibitem{VarTyu03}
\by A.~N.~Varchenko, S.~Tyurina
\paper A~remark on the~$sl_2$ approximation of the Kontsevich integral of the unknot
\inbook Geometry and topology. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 299
\pages 30--37
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2038252}
\zmath{https://zbmath.org/?q=an:1144.57301}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 131
\issue 1
\pages 5270--5274
\crossref{https://doi.org/10.1007/s10958-005-0399-1}
Linking options:
  • https://www.mathnet.ru/eng/znsl1030
  • https://www.mathnet.ru/eng/znsl/v299/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :90
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024