Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 300, Pages 187–193 (Mi znsl1008)  

This article is cited in 1 scientific paper (total in 1 paper)

On Hamiltonian systems with homoclinic orbit to a saddle-center

O. Yu. Koltsova

N. I. Lobachevski State University of Nizhni Novgorod, Faculty of Computational Mathematics and Cybernetics
Full-text PDF (149 kB) Citations (1)
References:
Abstract: We consider a real analytic two degrees of freedom Hamiltonian system possessing a homoclinic orbit to a saddle-center equilibrium (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such the system and show that in nonresonance case there are countable sets of multi-round homoclinic orbits to a saddle-center. We also find families of periodic orbits, accumulating at homoclinic orbits.
Received: 30.11.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 128, Issue 2, Pages 2787–2790
DOI: https://doi.org/10.1007/s10958-005-0232-x
Bibliographic databases:
UDC: 517.9
Language: English
Citation: O. Yu. Koltsova, “On Hamiltonian systems with homoclinic orbit to a saddle-center”, Representation theory, dynamical systems. Part VIII, Special issue, Zap. Nauchn. Sem. POMI, 300, POMI, St. Petersburg, 2003, 187–193; J. Math. Sci. (N. Y.), 128:2 (2005), 2787–2790
Citation in format AMSBIB
\Bibitem{Kol03}
\by O.~Yu.~Koltsova
\paper On Hamiltonian systems with homoclinic orbit to a~saddle-center
\inbook Representation theory, dynamical systems. Part~VIII
\bookinfo Special issue
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 300
\pages 187--193
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1993037}
\zmath{https://zbmath.org/?q=an:1120.37037}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 128
\issue 2
\pages 2787--2790
\crossref{https://doi.org/10.1007/s10958-005-0232-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl1008
  • https://www.mathnet.ru/eng/znsl/v300/p187
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :47
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024