Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. YuUrGU. Ser. Vych. Matem. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika", 2013, Volume 2, Issue 3, Pages 92–105
DOI: https://doi.org/10.14529/cmse130307
(Mi vyurv95)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computational Mathematics

Parallel algebraic solvers library Krylov

D. S. Butyuginab, Ya. L. Guryevaa, V. P. Il'ina, D. V. Perevozkina, A. V. Petukhova, I. N. Skopina

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS (Novosibirsk, Russian Federation)
b Novosibirsk State University
Full-text PDF (717 kB) Citations (1)
References:
Abstract: Article describes functional capabilities and software implementation peculiarities of parallel algorithms library Krylov, which is oriented on the solution of large systems of linear algebraic equations with sparse symmetric and unsymmetric matrices (positive definite and semi-definite) obtained from discrete approximations of multidimensional boundary value problems for partial differential equations on unstructured meshes. The library includes two-level iterative methods in Krylov subspaces; preconditioning of the latter is based on the balanced decomposition of the computational domain with variable sizes of subdomain overlapping and different boundary conditions on interfacing boundaries. Program implementations use typical compressed sparse matrix data formats. Results of numerical experiments are presented which demonstrate the efficiency of parallelization for typical ill-conditioned problems.
Keywords: preconditioned iterative algorithms; Krylov subspaces; domain decomposition methods; sparse algebraic systems; numerical experiments.
Received: 14.06.2013
Document Type: Article
UDC: 519.612
Language: Russian
Citation: D. S. Butyugin, Ya. L. Guryeva, V. P. Il'in, D. V. Perevozkin, A. V. Petukhov, I. N. Skopin, “Parallel algebraic solvers library Krylov”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 2:3 (2013), 92–105
Citation in format AMSBIB
\Bibitem{ButGurIli13}
\by D.~S.~Butyugin, Ya.~L.~Guryeva, V.~P.~Il'in, D.~V.~Perevozkin, A.~V.~Petukhov, I.~N.~Skopin
\paper Parallel algebraic solvers library Krylov
\jour Vestn. YuUrGU. Ser. Vych. Matem. Inform.
\yr 2013
\vol 2
\issue 3
\pages 92--105
\mathnet{http://mi.mathnet.ru/vyurv95}
\crossref{https://doi.org/10.14529/cmse130307}
Linking options:
  • https://www.mathnet.ru/eng/vyurv95
  • https://www.mathnet.ru/eng/vyurv/v2/i3/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025