Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. YuUrGU. Ser. Vych. Matem. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika", 2024, Volume 13, Issue 3, Pages 5–31
DOI: https://doi.org/10.14529/cmse240301
(Mi vyurv319)
 

Numerical implementation of surface movement method in linear programming

L. B. Sokolinsky, N. A. Olkhovsky, I. M. Sokolinskaya

South Ural State University (pr. Lenina 76, Chelyabinsk, 454080 Russia)
Abstract: The article is devoted to the numerical implementation of a new linear programming method called the surface movement method. The implementation is based on the AlFaMove algorithm, which builds, on the surface of the feasible polytope, the optimal objective path from an arbitrary boundary point to a point that is a solution to the linear programming problem. The optimality of the path lies in the fact that the direction of movement along the face of the polytope corresponds to the maximum increase in the value of the objective function. To calculate the optimal direction of movement, a method based on the operation of pseudoprojection onto a linear manifold is used. The pseudoprojection operation is a generalization of the notion of orthogonal projection. Pseudo projection is implemented using an iterative projection-type algorithm. The proposition is proved that the pseudoprojection coincides with the orthogonal projection in the case of a linear manifold that is the intersection of hyperplanes. It is also proved that, in the case of a linear manifold, the pseudoprojection method calculates a movement vector that coincides with the direction of maximum increase of the objective function. A parallel implementation of the AlFaMove algorithm is performed. The results of computational experiments on a cluster computing system are presented, which demonstrate the high scalability of the proposed numerical implementation.
Keywords: linear programming, surface movement method, numerical implementation, AlFaMove algorithm, parallel implementation, cluster computing system, scalability evaluation.
Funding agency Grant number
Russian Science Foundation 23-21-00356
Received: 10.06.2024
Document Type: Article
UDC: 519.852, 004.021, 004.032.24
Language: Russian
Citation: L. B. Sokolinsky, N. A. Olkhovsky, I. M. Sokolinskaya, “Numerical implementation of surface movement method in linear programming”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 13:3 (2024), 5–31
Citation in format AMSBIB
\Bibitem{SokOlkSok24}
\by L.~B.~Sokolinsky, N.~A.~Olkhovsky, I.~M.~Sokolinskaya
\paper Numerical implementation of surface movement method in linear programming
\jour Vestn. YuUrGU. Ser. Vych. Matem. Inform.
\yr 2024
\vol 13
\issue 3
\pages 5--31
\mathnet{http://mi.mathnet.ru/vyurv319}
\crossref{https://doi.org/10.14529/cmse240301}
Linking options:
  • https://www.mathnet.ru/eng/vyurv319
  • https://www.mathnet.ru/eng/vyurv/v13/i3/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
    Statistics & downloads:
    Abstract page:18
    Full-text PDF :4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024