Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. YuUrGU. Ser. Vych. Matem. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika", 2019, Volume 8, Issue 1, Pages 54–70
DOI: https://doi.org/10.14529/cmse190104
(Mi vyurv206)
 

Parallel frequent itemset mining on the Intel MIC accelerators

M. L. Tsymbler

South Ural State University (pr. Lenina 76, Chelyabinsk, 454080 Russia)
References:
Abstract: Association rule mining is one of the basic problems of data mining, which supposes finding strong correlations between itemsets in large transaction database. Association rules are generated from frequent itemsets (itemset is frequent if its items frequent occur together in transactions). The DIC (Dynamic Itemset Counting) algorithm is modification of the classical Apriori algorithm of finding frequent itemsets. DIC tries to reduce the number of passes made over the transaction database while keeping the number of itemsets counted in a pass relatively low. The paper addresses the task of accelerating DIC on the Intel MIC (Many Integrated Core) systems in the case when the transaction database fits into the main memory. The paper presents a parallel implementation of DIC based on OpenMP technology and thread-level parallelism. We exploit the bit-based internal layout for transactions and itemsets. This technique simplifies the support count via logical bitwise operation, and allows for vectorization of such a step. Experiments with large synthetic and real databases showed good performance and scalability of the proposed algorithm.
Keywords: data mining, frequent itemset counting, OpenMP, Intel Many Integrated Core.
Received: 26.12.2018
Bibliographic databases:
Document Type: Article
UDC: 004.272.25, 004.421, 004.032.24
Language: Russian
Citation: M. L. Tsymbler, “Parallel frequent itemset mining on the Intel MIC accelerators”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 8:1 (2019), 54–70
Citation in format AMSBIB
\Bibitem{Tsy19}
\by M.~L.~Tsymbler
\paper Parallel frequent itemset mining on the Intel MIC accelerators
\jour Vestn. YuUrGU. Ser. Vych. Matem. Inform.
\yr 2019
\vol 8
\issue 1
\pages 54--70
\mathnet{http://mi.mathnet.ru/vyurv206}
\crossref{https://doi.org/10.14529/cmse190104}
\elib{https://elibrary.ru/item.asp?id=37074208}
Linking options:
  • https://www.mathnet.ru/eng/vyurv206
  • https://www.mathnet.ru/eng/vyurv/v8/i1/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :65
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024