Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. YuUrGU. Ser. Vych. Matem. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika", 2018, Volume 7, Issue 3, Pages 65–82
DOI: https://doi.org/10.14529/cmse180305
(Mi vyurv195)
 

Computational Mathematics

A parallel algorithm of Euclidean distance matrix computation for the Intel Xeon Phi Knights Landing many-core processor

T. V. Rechkalov, M. L. Zymbler

South Ural State University (pr. Lenina 76, Chelyabinsk, 454080 Russia)
References:
Abstract: Computation of a Euclidean distance matrix (EDM) is a typical task in a wide spectrum of problems connected with data mining. Currently, many parallel algorithms for this task have been developed for graphical processors. These developments, however, cannot be directly applied to the Intel Many Integrated Core systems. In this paper, we suggest a parallel algorithm for EDM computation on Intel Xeon Phi Knights Landing processor in the case when the input data fit into the main memory. The algorithm exploits block-oriented scheme of computations that allows for the efficient utilization of Intel Xeon Phi vectorization abilities. In the algorithm, we also apply apply a sophisticated data layout to store data points in main memory so as to reduce the number of processor cache misses during EDM computations. Experimental evaluation of the algorithm on real-world and synthetic datasets shows that it is highly scalable and outruns analogues in the case of rectangular matrices with low-dimensional data points.
Keywords: OpenMP, Intel Xeon Phi, Knights Landing, Euclidean distance matrix, data layout, vectorization.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-00463
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
2.7905.2017/8.9
Received: 06.05.2018
Bibliographic databases:
Document Type: Article
UDC: 004.272.25, 004.421, 004.032.24
Language: Russian
Citation: T. V. Rechkalov, M. L. Zymbler, “A parallel algorithm of Euclidean distance matrix computation for the Intel Xeon Phi Knights Landing many-core processor”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 7:3 (2018), 65–82
Citation in format AMSBIB
\Bibitem{RecTsy18}
\by T.~V.~Rechkalov, M.~L.~Zymbler
\paper A parallel algorithm of Euclidean distance matrix computation for the Intel Xeon Phi Knights Landing many-core processor
\jour Vestn. YuUrGU. Ser. Vych. Matem. Inform.
\yr 2018
\vol 7
\issue 3
\pages 65--82
\mathnet{http://mi.mathnet.ru/vyurv195}
\crossref{https://doi.org/10.14529/cmse180305}
\elib{https://elibrary.ru/item.asp?id=35451530}
Linking options:
  • https://www.mathnet.ru/eng/vyurv195
  • https://www.mathnet.ru/eng/vyurv/v7/i3/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Vychislitelnaya Matematika i Informatika"
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :49
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024