Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2024, Volume 17, Issue 1, Pages 49–63
DOI: https://doi.org/10.14529/mmp240105
(Mi vyuru711)
 

Mathematical Modelling

Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology

N. G. Nikolaeva, O. V. Gavrilova, N. A. Manakova

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: The study of the phase space morphology of the mathematical model deformation of an I-beam, which lies on smooth Banach manifolds with singularities ($k$-Whitney assembly) depending on the parameters of the problem, is devoted to the paper. The mathematical model is studied in the case when the operator at time derivative is degenerate. The study of the question of non-uniqueness of the solution of the Showalter–Sidorov problem for the Hoff model in the two-dimensional domain is carried out on the basis of the phase space method, which was developed by G.A. Sviridyuk. The conditions of non-uniqueness of the solution in the case when the dimension of the operator kernel at time derivative is equal to 1 or 2 are found. Two approaches for revealing the number of solutions of the Showalter–Sidorov problem in the case when the dimension of the operator kernel at time derivative is equal to 2 are presented. Examples illustrating the non-uniqueness of the solution of the problem on a rectangle are given.
Keywords: Sobolev type equations, Showalter–Sidorov problem, phase space method, Whitney assemblies, the Hoff equation, non-uniqueness of solutions.
Received: 09.01.2024
Document Type: Article
UDC: 517.9
MSC: 35Q99
Language: English
Citation: N. G. Nikolaeva, O. V. Gavrilova, N. A. Manakova, “Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024), 49–63
Citation in format AMSBIB
\Bibitem{NikGavMan24}
\by N.~G.~Nikolaeva, O.~V.~Gavrilova, N.~A.~Manakova
\paper Investigation of the uniqueness solution of the Showalter--Sidorov problem for the mathematical Hoff model. Phase space morphology
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2024
\vol 17
\issue 1
\pages 49--63
\mathnet{http://mi.mathnet.ru/vyuru711}
\crossref{https://doi.org/10.14529/mmp240105}
Linking options:
  • https://www.mathnet.ru/eng/vyuru711
  • https://www.mathnet.ru/eng/vyuru/v17/i1/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :15
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024