Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2023, Volume 16, Issue 3, Pages 65–73
DOI: https://doi.org/10.14529/mmp230305
(Mi vyuru695)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Notes

Stability of a stationary solution to one class of non-autonomous Sobolev type equations

A. V. Buevich, M. A. Sagadeeva, S. A. Zagrebina

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (199 kB) Citations (2)
References:
Abstract: The article is devoted to the study of the stability of a stationary solution to the Cauchy problem for a non-autonomous linear Sobolev type equation in a relatively bounded case. Namely, we consider the case when the relative spectrum of the equation operator can intersect with the imaginary axis. In this case, there exist no exponential dichotomies and the second Lyapunov method is used to study stability. The stability of stationary solutions makes it possible to evaluate the qualitative behavior of systems described using such equations. In addition to introduction, conclusion and list of references, the article contains two sections. Section 1 describes the construction of solutions to non-autonomous equations of the class under consideration, and Section 2 examines the stability of a stationary solution to such equations.
Keywords: relatively bounded operator, Lyapunov's second method, local stream of operators, asymptotic stability.
Received: 25.05.2023
Document Type: Article
UDC: 517.9
MSC: 34K20, 34G10
Language: English
Citation: A. V. Buevich, M. A. Sagadeeva, S. A. Zagrebina, “Stability of a stationary solution to one class of non-autonomous Sobolev type equations”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:3 (2023), 65–73
Citation in format AMSBIB
\Bibitem{BueSagZag23}
\by A.~V.~Buevich, M.~A.~Sagadeeva, S.~A.~Zagrebina
\paper Stability of a stationary solution to one class of non-autonomous Sobolev type equations
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2023
\vol 16
\issue 3
\pages 65--73
\mathnet{http://mi.mathnet.ru/vyuru695}
\crossref{https://doi.org/10.14529/mmp230305}
Linking options:
  • https://www.mathnet.ru/eng/vyuru695
  • https://www.mathnet.ru/eng/vyuru/v16/i3/p65
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:40
    Full-text PDF :12
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024