Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2023, Volume 16, Issue 1, Pages 116–122
DOI: https://doi.org/10.14529/mmp230110
(Mi vyuru678)
 

Short Notes

The Green function method in the problem of random signal transformation by a linear dynamic system

V. L. Khatskevich, O. A. Makhinova

Air Force Academy named after N.E. Zhukovsky and Y.U. Gagarin, Voronezh, Russian Federation
References:
Abstract: A dynamic system is considered, which is described by a high order linear differential equation with constant coefficients. The Green's function method established the relationship between the numerical characteristics of a random signal at the input and output of a dynamic system, namely between mathematical expectations and between correlation functions. In contrast to the known results, the stationarity of the input and output random signals is not assumed.
Keywords: continuous random processes, mathematical expectations, correlation functions, dynamical systems with random functions.
Received: 18.05.2022
Document Type: Article
UDC: 681.5.015
MSC: 93E99
Language: Russian
Citation: V. L. Khatskevich, O. A. Makhinova, “The Green function method in the problem of random signal transformation by a linear dynamic system”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:1 (2023), 116–122
Citation in format AMSBIB
\Bibitem{KhaMak23}
\by V.~L.~Khatskevich, O.~A.~Makhinova
\paper The Green function method in the problem of random signal transformation by a linear dynamic system
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2023
\vol 16
\issue 1
\pages 116--122
\mathnet{http://mi.mathnet.ru/vyuru678}
\crossref{https://doi.org/10.14529/mmp230110}
Linking options:
  • https://www.mathnet.ru/eng/vyuru678
  • https://www.mathnet.ru/eng/vyuru/v16/i1/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024