Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2012, Issue 13, Pages 35–44 (Mi vyuru66)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical Modelling

Optimization of a Polyharmonic Impulse

V. N. Ermolenkoa, V. A. Kostinb, D. V. Kostinb, Yu. I. Sapronovb

a Ingineering company «Vibroinnovation» (Voronezh, Russian Federation)
b Voronezh State University (Voronezh, Russian Federation)
Full-text PDF (212 kB) Citations (2)
References:
Abstract: In theory and practice of building some technical devices, it is necessary to optimize trigonometric polynomials. In this article, we provide optimization of a trigonometric polynomial (polyharmonic impulse) $f(t):=\sum\limits_{k=1}^n\,f_k\cos(kt)$ with the asymmetry coefficient $k := \frac{f_{max}}{|f_{min}|}$, $f_{max} \ \ := \max\limits_t\,f(t,\lambda)$, $f_{min} := \min\limits_t\,f(t,\lambda)$. We have calculated optimal values of main amplitudes. The basis of the analysis represented in the article is the idea of the “minimal Maxwell stratum” by which we understand the subset of polynomials of a fixed degree with maximal possible number of minima under condition that all these minima are located at the same level. Polynomial $f(t)$ is then called maxwellian. The starting point of the present study was an experimentally obtained optimal set of coefficients $f_k$ for arbitrary $n$. Later, we proved uniqueness of the optimal polynomial with maximal number of minima on interval $[0,\pi]$ and derived general formula of a maxwellian polynomial of degree $n$, which was related to Fejer kernel with the asymmetry coefficient $n$. Thus, a natural hypothesis arose that Fejer kernel should define the optimal polynomial. The present paper provides justification of this hypothesis.
Keywords: polyharmonic impulse, trigonometric polynom, asymmetry coefficient, optimization, Maxwell stratum, orthogonal polynomials.
Received: 29.06.2012
Document Type: Article
UDC: 517.9+621.67
MSC: 90C30, 90C90
Language: Russian
Citation: V. N. Ermolenko, V. A. Kostin, D. V. Kostin, Yu. I. Sapronov, “Optimization of a Polyharmonic Impulse”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 35–44
Citation in format AMSBIB
\Bibitem{ErmKosKos12}
\by V.~N.~Ermolenko, V.~A.~Kostin, D.~V.~Kostin, Yu.~I.~Sapronov
\paper Optimization of a Polyharmonic Impulse
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2012
\issue 13
\pages 35--44
\mathnet{http://mi.mathnet.ru/vyuru66}
Linking options:
  • https://www.mathnet.ru/eng/vyuru66
  • https://www.mathnet.ru/eng/vyuru/y2012/i13/p35
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :95
    References:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024