Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2022, Volume 15, Issue 1, Pages 84–100
DOI: https://doi.org/10.14529/mmp220105
(Mi vyuru630)
 

This article is cited in 5 scientific papers (total in 5 papers)

Survey Articles

Semilinear models of sobolev type. Non-uniqueness of solution to the Showalter–Sidorov problem

N. A. Manakova, O. V. Gavrilova, K. V. Perevozhikova

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (257 kB) Citations (5)
References:
Abstract: The article is of a survey nature and contains the results of a study about the morphology of the phase spaces of semilinear models of Sobolev type. The paper presents studies of the mathematical models whose phase spaces belong to smooth Banach manifolds with singularities depending on the parameters of the problem, namely, the Hoff model, the Plotnikov model, the distributed brusselator model, and the nerve impulse propagation model. In the first part of the article, we present conditions under which the phase manifolds of the considered models are simple smooth Banach manifolds, which implies the uniqueness of a solution to the Showalter–Sidorov problem. In the second part of the article, we present conditions under which the phase manifolds of the considered models contain singularities, which implies the non-uniqueness of a solution to the Showalter–Sidorov problem.
Keywords: Sobolev type equations, phase space, morphology of phase space, Banach manifold, Showalter–Sidorov problem, k-assembly Whitney.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FENU-2020-0022 (2020072ГЗ)
Received: 03.12.2021
Document Type: Article
UDC: 517.9
MSC: 46E35, 35Q99
Language: Russian
Citation: N. A. Manakova, O. V. Gavrilova, K. V. Perevozhikova, “Semilinear models of sobolev type. Non-uniqueness of solution to the Showalter–Sidorov problem”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 84–100
Citation in format AMSBIB
\Bibitem{ManGavPer22}
\by N.~A.~Manakova, O.~V.~Gavrilova, K.~V.~Perevozhikova
\paper Semilinear models of sobolev type. Non-uniqueness of solution to the Showalter--Sidorov problem
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2022
\vol 15
\issue 1
\pages 84--100
\mathnet{http://mi.mathnet.ru/vyuru630}
\crossref{https://doi.org/10.14529/mmp220105}
Linking options:
  • https://www.mathnet.ru/eng/vyuru630
  • https://www.mathnet.ru/eng/vyuru/v15/i1/p84
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :40
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024