Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2020, Volume 13, Issue 4, Pages 94–106
DOI: https://doi.org/10.14529/mmp200408
(Mi vyuru574)
 

This article is cited in 1 scientific paper (total in 1 paper)

Programming & Computer Software

Training Viola–Jones detectors for 3D objects based on fully synthetic data for use in rescue missions with UAV

S. A. Usilinabc, V. V. Arlazarovcdba, N. S. Rokhline, S. A. Rudykae, S. A. Matveeve, A. A. Zatsarinnyya

a Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow, Russian Federation
b Moscow Institute of Physics and Technology, Moscow, Russian Federation
c Smart Engines Service LLC, Moscow, Russian Federation
d Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russian Federation
e Baltic State Technical University “VOENMEH” named after D.F. Ustinov, St. Petersburg, Russian Federation
Full-text PDF (427 kB) Citations (1)
References:
Abstract: In this paper, the problem of training the Viola–Jones detector for 3D objects is considered on the example of an inflatable life raft PSN-10. The detector is trained on a fully synthetic training dataset. The paper discusses in detail the methods of modelling an inflatable life raft, water surface, various weather conditions. As a feature space, we use edge Haar-like features, which allow training the detector that is resistant to various lighting conditions. To increase the computational efficiency, the L1 norm is used to calculate the magnitude of the image gradient. The performance of the trained detector is estimated on real data obtained during the rescue operation of the trawler “Dalniy Vostok”. The proposed method for training the Viola–Jones detectors can be successfully used as a component of hardware and software “assistants” of the UAV.
Keywords: machine learning, object detection, Viola–Jones, classification, 3D object, UAV, rescue mission.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 074-11-2018-025
Received: 11.09.2020
Bibliographic databases:
Document Type: Article
MSC: 68T10
Language: English
Citation: S. A. Usilin, V. V. Arlazarov, N. S. Rokhlin, S. A. Rudyka, S. A. Matveev, A. A. Zatsarinnyy, “Training Viola–Jones detectors for 3D objects based on fully synthetic data for use in rescue missions with UAV”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 94–106
Citation in format AMSBIB
\Bibitem{UsiArlRok20}
\by S.~A.~Usilin, V.~V.~Arlazarov, N.~S.~Rokhlin, S.~A.~Rudyka, S.~A.~Matveev, A.~A.~Zatsarinnyy
\paper Training Viola--Jones detectors for 3D objects based on fully synthetic data for use in rescue missions with UAV
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2020
\vol 13
\issue 4
\pages 94--106
\mathnet{http://mi.mathnet.ru/vyuru574}
\crossref{https://doi.org/10.14529/mmp200408}
\elib{https://elibrary.ru/item.asp?id=44541965}
Linking options:
  • https://www.mathnet.ru/eng/vyuru574
  • https://www.mathnet.ru/eng/vyuru/v13/i4/p94
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :69
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024