Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2020, Volume 13, Issue 2, Pages 121–129
DOI: https://doi.org/10.14529/mmp200210
(Mi vyuru548)
 

This article is cited in 1 scientific paper (total in 1 paper)

Programming and Computer Software

Parametric identification based on the adaptive unscented Kalman filter

V. M. Chubich, O. S. Chernikova

Novosibirsk State Technical University, Novosibirsk, Russian Federation
Full-text PDF (204 kB) Citations (1)
References:
Abstract: The detailed adaptive unscented Kalman filter algorithm is provided. Step-by-step schemes of filtering algorithms used for the software development are given. Nonlinear filtering algorithm efficiency is investigated with considering an example of a nonlinear continuous-discrete model. The statistic estimator based on the continuous-discrete adaptive unscented Kalman filter with noise is proposed for the nonlinear system parameters estimation. The solution to the problem of solar radiation parameters estimation based on the maximum likelihood method and the adaptive unscented Kalman filter is shown. The obtained results lead to significant improvement of satellite trajectory prediction quality.
Keywords: nonlinear stochastic continuous-discrete system, adaptive unscented Kalman filter, parametric identification, ML method, spacecraft motion model, solar radiation model.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2.7996.2017/8.9
The work was supported by the Ministry of Education and Science of the Russian Federation (project No 2.7996.2017/8.9).
Received: 08.10.2019
Document Type: Article
UDC: 51-74
MSC: 93E13
Language: English
Citation: V. M. Chubich, O. S. Chernikova, “Parametric identification based on the adaptive unscented Kalman filter”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020), 121–129
Citation in format AMSBIB
\Bibitem{ChuChe20}
\by V.~M.~Chubich, O.~S.~Chernikova
\paper Parametric identification based on the adaptive unscented Kalman filter
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2020
\vol 13
\issue 2
\pages 121--129
\mathnet{http://mi.mathnet.ru/vyuru548}
\crossref{https://doi.org/10.14529/mmp200210}
Linking options:
  • https://www.mathnet.ru/eng/vyuru548
  • https://www.mathnet.ru/eng/vyuru/v13/i2/p121
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :81
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024