Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2020, Volume 13, Issue 1, Pages 129–140
DOI: https://doi.org/10.14529/mmp200110
(Mi vyuru536)
 

This article is cited in 2 scientific papers (total in 2 papers)

Programming and Computer Software

Acceleration of summation over segments using the fast Hough transformation pyramid

K. V. Soshinab, D. P. Nikolaevb, S. A. Gladilinb, E. I. Ershovb

a Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
b Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russian Federation
Full-text PDF (368 kB) Citations (2)
References:
Abstract: In this paper, we propose an algorithm for fast approximate calculation of the sums over arbitrary segments given by a pair of pixels in the image. Using the results of intermediate calculations of the fast Hough transform, the proposed algorithm allows to calculate the sum over arbitrary line segment with a logarithmic complexity depending on the linear size of the original image (also called fast discrete Radon transform or Brady transform). In this approach, the key element of the algorithm is the search for the dyadic straight line passing through two given pixels. We propose an algorithm for solving this problem that does not degrade the general asymptotics. We prove the correctness of the algorithm and describe a generalization of this approach to the three-dimensional case for segments of straight lines and of planes.
Keywords: search for segments, fast Hough transformation, discrete Radon transformation, Brady algorithm, fast discrete Radon transformation, dyadic pattern, beamlet pyramid.
Received: 25.11.2019
Document Type: Article
UDC: 004.021
MSC: 65D18
Language: English
Citation: K. V. Soshin, D. P. Nikolaev, S. A. Gladilin, E. I. Ershov, “Acceleration of summation over segments using the fast Hough transformation pyramid”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020), 129–140
Citation in format AMSBIB
\Bibitem{SosNikGla20}
\by K.~V.~Soshin, D.~P.~Nikolaev, S.~A.~Gladilin, E.~I.~Ershov
\paper Acceleration of summation over segments using the fast Hough transformation pyramid
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2020
\vol 13
\issue 1
\pages 129--140
\mathnet{http://mi.mathnet.ru/vyuru536}
\crossref{https://doi.org/10.14529/mmp200110}
Linking options:
  • https://www.mathnet.ru/eng/vyuru536
  • https://www.mathnet.ru/eng/vyuru/v13/i1/p129
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :46
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024