Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2020, Volume 13, Issue 1, Pages 5–27
DOI: https://doi.org/10.14529/mmp200101
(Mi vyuru527)
 

This article is cited in 10 scientific papers (total in 10 papers)

Survey Articles

Optimal control in linear Sobolev type mathematical models

A. A. Zamyshlyaeva, N. A. Manakova, O. N. Tsyplenkova

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: The article presents a review of the work of the Chelyabinsk mathematical school on Sobolev type equations in studying the optimal control problems for linear Sobolev type models with initial Cauchy (Showalter–Sidorov) conditions or initial-final conditions. To identify the nonemptiness of the set of feasible solutions to the control problem we use the phase space method, which has already proved itself in solving Sobolev type equations. The method reduces the singular equation to a regular one defined on some subspace of the original space and applies the theory of degenerate (semi)groups of operators to the case of relatively bounded, sectorial and radial operators. Here mathematical models are reduced to initial (initial-final) problems for an abstract Sobolev type equation. Abstract results are applied to the study of control problems for the Barenblatt–Zheltov–Kochina mathematical model, which describes fluid filtration in a fractured-porous medium, the Hoff model on a graph simulating the dynamics of I-beam bulging in a construction, and the Boussinesq–Löve model describing longitudinal vibrations in a thin elastic rod, taking into account inertia and under external load, or the propagation of waves in shallow water.
Keywords: Sobolev type equations, strong solutions, optimal control, phase space, Barenblatt–Zheltov–Kochina model, model of an I-beam bulging, Boussinesq–Löve model, Dzektzer model, Chen–Gurtin model.
Received: 11.12.2019
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35K70, 49K20
Language: English
Citation: A. A. Zamyshlyaeva, N. A. Manakova, O. N. Tsyplenkova, “Optimal control in linear Sobolev type mathematical models”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020), 5–27
Citation in format AMSBIB
\Bibitem{ZamManTsy20}
\by A.~A.~Zamyshlyaeva, N.~A.~Manakova, O.~N.~Tsyplenkova
\paper Optimal control in linear Sobolev type mathematical models
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2020
\vol 13
\issue 1
\pages 5--27
\mathnet{http://mi.mathnet.ru/vyuru527}
\crossref{https://doi.org/10.14529/mmp200101}
\elib{https://elibrary.ru/item.asp?id=42661914}
Linking options:
  • https://www.mathnet.ru/eng/vyuru527
  • https://www.mathnet.ru/eng/vyuru/v13/i1/p5
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :45
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024