Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2019, Volume 12, Issue 3, Pages 28–41
DOI: https://doi.org/10.14529/mmp190303
(Mi vyuru502)
 

Mathematical Modelling

On the stability of two-dimensional flows close to the shear

O. V. Kirichenkoa, S. V. Revinaab

a Southern Federal University, Rostov-on-Don, Russian Federation
b Southern Mathematical Institute оf the Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Russian Federation
References:
Abstract: We consider the stability problem for two-dimensional spatially periodic flows of general form, close to the shear, assuming that the ratio of the periods tends to zero, and the average of the velocity component corresponding to the “long” period is non-zero. The first terms of the long-wavelength asymptotics are found. The coefficients of the asymptotic expansions are explicitly expressed in terms of some Wronskians and integral operators of Volterra type, as in the case of shear basic flow. The structure of eigenvalues and eigenfunctions for the first terms of asymptotics is identified, a comparison with the case of shear flow is made. We study subclasses of the considered class of flows in which the general properties of the qualitative behavior of eigenvalues and eigenfunctions are found. Plots of neutral curves are constructed. The most dangerous disturbances are numerically found. Fluid particle trajectories in the self-oscillatory regime in the linear approximation are given.
Keywords: long-wave asymptotics, stability of two-dimensional viscous flows, neutral stability curves.
Received: 11.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35Q30, 35P20, 35B35
Language: English
Citation: O. V. Kirichenko, S. V. Revina, “On the stability of two-dimensional flows close to the shear”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:3 (2019), 28–41
Citation in format AMSBIB
\Bibitem{KirRev19}
\by O.~V.~Kirichenko, S.~V.~Revina
\paper On the stability of two-dimensional flows close to the shear
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2019
\vol 12
\issue 3
\pages 28--41
\mathnet{http://mi.mathnet.ru/vyuru502}
\crossref{https://doi.org/10.14529/mmp190303}
\elib{https://elibrary.ru/item.asp?id=41265001}
Linking options:
  • https://www.mathnet.ru/eng/vyuru502
  • https://www.mathnet.ru/eng/vyuru/v12/i3/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :36
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024