Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2019, Volume 12, Issue 2, Pages 150–157
DOI: https://doi.org/10.14529/mmp190213
(Mi vyuru496)
 

This article is cited in 5 scientific papers (total in 5 papers)

Short Notes

Research of one mathematical model of the distribution of potentials in a crystalline semiconductor

N. A. Manakova, K. V. Vasiuchkova

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (191 kB) Citations (5)
References:
Abstract: The article is devoted to the research of the Cauchy problem for a mathematical model of the distribution of potentials in a crystalline semiconductor. By a semiconductor we mean a substance with finite electrical conductivity, which rapidly increases with increase in the temperature. The mathematical model of the distribution of potentials is based on the semi-linear Sobolev type equation supplemented by the Dirichlet and Cauchy conditions. We use the phase space method to construct sufficient conditions for the existence of the solution to the model under study. The conditions for the continuability of the solution are given.
Keywords: Sobolev type equations, mathematical model of distribution of potentials in crystalline semiconductor, phase space method, quasi-stationary trajectories.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.А03.21.0011
Received: 27.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 60H30
Language: Russian
Citation: N. A. Manakova, K. V. Vasiuchkova, “Research of one mathematical model of the distribution of potentials in a crystalline semiconductor”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 150–157
Citation in format AMSBIB
\Bibitem{ManVas19}
\by N.~A.~Manakova, K.~V.~Vasiuchkova
\paper Research of one mathematical model of the distribution of potentials in a crystalline semiconductor
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2019
\vol 12
\issue 2
\pages 150--157
\mathnet{http://mi.mathnet.ru/vyuru496}
\crossref{https://doi.org/10.14529/mmp190213}
\elib{https://elibrary.ru/item.asp?id=38225245}
Linking options:
  • https://www.mathnet.ru/eng/vyuru496
  • https://www.mathnet.ru/eng/vyuru/v12/i2/p150
  • This publication is cited in the following 5 articles:
    1. K. V. Perevozchikova, “The analysis and processing of information for one stochastic system of the Sobolev type”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 15:2 (2023), 14–20  mathnet  crossref
    2. K. V. Perevozhikova, N. A. Manakova, “Research of the optimal control problem for one mathematical model of the Sobolev type”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 14:4 (2021), 36–45  mathnet  crossref
    3. K. V. Perevozhikova, N. A. Manakova, A. S. Kuptsova, “Issledovanie razlichnykh tipov zadach upravleniya dlya odnoi modeli nelineinoi filtratsii”, J. Comp. Eng. Math., 8:4 (2021), 45–61  mathnet  crossref
    4. K. V. Perevozhikova, N. A. Manakova, “Chislennoe modelirovanie startovogo upravleniya i finalnogo nablyudeniya v modeli filtratsii zhidkosti”, J. Comp. Eng. Math., 8:1 (2021), 29–45  mathnet  crossref
    5. K. V. Vasiuchkova, “Chislennoe issledovanie dlya zadachi startovogo upravleniya i finalnogo nablyudeniya v modeli raspredeleniya potentsialov v kristallicheskom poluprovodnike”, J. Comp. Eng. Math., 6:3 (2019), 54–68  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :71
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025