Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2019, Volume 12, Issue 2, Pages 136–142
DOI: https://doi.org/10.14529/mmp190211
(Mi vyuru494)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Notes

The Barenblatt–Zheltov–Kochina model on the segment with Wentzell boundary conditions

N. S. Goncharov

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (189 kB) Citations (2)
References:
Abstract: In terms of the theory of relative p-bounded operators, we study the Barenblatt–Zheltov–Kochina model, which describes dynamics of pressure of a filtered fluid in a fractured-porous medium with general Wentzell boundary conditions. In particular, we consider spectrum of one-dimensional Laplace operator on the segment $[0,1]$ with general Wentzell boundary conditions. We examine the relative spectrum in one-dimensional Barenblatt–Zheltov–Kochina equation, and construct the resolving group in the Cauchy-Wentzell problem with general Wentzell boundary conditions. In the paper, these problems are solved under the assumption that the initial space is a contraction of the space $L^2(0,1)$.
Keywords: Barenblatt–Zheltov–Kochina model, relatively p-bounded operator, phase space, $C_0$-contraction semigroups, Wentzell boundary conditions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
The work was supported by Act 211 Government of the Russian Federation, contract no. 02.A03.21.0011.
Received: 03.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35G15
Language: English
Citation: N. S. Goncharov, “The Barenblatt–Zheltov–Kochina model on the segment with Wentzell boundary conditions”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 136–142
Citation in format AMSBIB
\Bibitem{Gon19}
\by N.~S.~Goncharov
\paper The Barenblatt--Zheltov--Kochina model on the segment with Wentzell boundary conditions
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2019
\vol 12
\issue 2
\pages 136--142
\mathnet{http://mi.mathnet.ru/vyuru494}
\crossref{https://doi.org/10.14529/mmp190211}
\elib{https://elibrary.ru/item.asp?id=38225243}
Linking options:
  • https://www.mathnet.ru/eng/vyuru494
  • https://www.mathnet.ru/eng/vyuru/v12/i2/p136
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :72
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024