Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2018, Volume 11, Issue 2, Pages 139–146
DOI: https://doi.org/10.14529/mmp180211
(Mi vyuru437)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Notes

The rate of convergence of hypersingular equations numerical computation

S. I. Eminov, S. Yu. Petrova

Novgorod State University Yaroslav the Wise, Veliky Novgorod, Russian Federation
Full-text PDF (465 kB) Citations (1)
References:
Abstract: Numerical methods for solving hypersingular equations based on Chebyshev polynomials of the second kind with a weight taking into account the Meixner physical conditions on the edge are developed. We obtained estimates of the rate of convergence using the analytical form of the matrix of an integral operator with a logarithmic singularity. Authors considered a delta function model, and its inapplicability in diffraction problems and vibrator antennas are shown. Previously, a numerical-analytical method for solving the excitation problems of vibrator antennas was proposed, but in the present work, the rationale for the numerical-analytical method is given for the first time. Unlike the reduction method, the numerical-analytical method demonstrates reliable convergence, not only in diffraction problems but also in antenna excitation problems. The specific feature of the excitation problems is that the right-hand side of the hypersingular equation is localized in a small region, in comparison with the characteristic dimensions of the antenna. Mathematically, this means that the right-hand side of the hypersingular equation decomposes into a slowly-convergent series. A similar property is also possessed by the solution of the equation. That is why the method of reduction is not effective enough. An example of a numerical solution is considered. Estimates of the rate of convergence are obtained. The applicability of developed methods for investigating a wide range of diffraction problems is shown.
Keywords: hypersingular integral; Chebyshev polynomial; rate of convergence; operator matrix; reduction method; Fredholm system of the second kind.
Received: 12.03.2018
Bibliographic databases:
Document Type: Article
UDC: 519.837
MSC: 41A50
Language: English
Citation: S. I. Eminov, S. Yu. Petrova, “The rate of convergence of hypersingular equations numerical computation”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:2 (2018), 139–146
Citation in format AMSBIB
\Bibitem{EmiPet18}
\by S.~I.~Eminov, S.~Yu.~Petrova
\paper The rate of convergence of hypersingular equations numerical computation
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2018
\vol 11
\issue 2
\pages 139--146
\mathnet{http://mi.mathnet.ru/vyuru437}
\crossref{https://doi.org/10.14529/mmp180211}
\elib{https://elibrary.ru/item.asp?id=35250096}
Linking options:
  • https://www.mathnet.ru/eng/vyuru437
  • https://www.mathnet.ru/eng/vyuru/v11/i2/p139
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024