Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2018, Volume 11, Issue 1, Pages 35–43
DOI: https://doi.org/10.14529/mmp180104
(Mi vyuru416)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical Modelling

Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method

A. V. Panyukov, Ya. A. Mezaal

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (472 kB) Citations (4)
References:
Abstract: Least Absolute Deviations (LAD) method is a method alternative to the Ordinary Least Squares OLS method. It allows to obtain robust errors in case of violation of OLS assumptions. We present two types of LAD: Weighted LAD method and Generalized LAD method. The established interrelation of methods made it possible to reduce the problem of determining the GLAD estimates to an iterative procedure with WLAD estimates. The latter is calculated by solving the corresponding linear programming problem. The sufficient condition imposed on the loss function is found to ensure the stability of the GLAD estimators of the autoregressive models coefficients under emission conditions. It ensures the stability of GLAD-estimates of autoregressive models in terms of outliers. Special features of the GLAD method application for the construction of the regression equation and autoregressive equation without exogenous variables are considered early. This paper is devoted to extension of the previously discussed methods to the problem of estimating the parameters of autoregressive models with exogenous variables.
Keywords: algorithm; autoregressive model; linear programming; parameter identification.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
The work was carried out with the financial support of the Government of the Russian Federation, contract no. 02.A03.21.0011.
Received: 12.08.2017
Bibliographic databases:
Document Type: Article
UDC: 519.688
MSC: 91B84
Language: English
Citation: A. V. Panyukov, Ya. A. Mezaal, “Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018), 35–43
Citation in format AMSBIB
\Bibitem{PanMez18}
\by A.~V.~Panyukov, Ya.~A.~Mezaal
\paper Stable identification of linear autoregressive model with exogenous variables on the basis of the generalized least absolute deviation method
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2018
\vol 11
\issue 1
\pages 35--43
\mathnet{http://mi.mathnet.ru/vyuru416}
\crossref{https://doi.org/10.14529/mmp180104}
\elib{https://elibrary.ru/item.asp?id=32711847}
Linking options:
  • https://www.mathnet.ru/eng/vyuru416
  • https://www.mathnet.ru/eng/vyuru/v11/i1/p35
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :46
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024