Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2017, Volume 10, Issue 3, Pages 156–162
DOI: https://doi.org/10.14529/mmp170314
(Mi vyuru395)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Notes

Spectral problems on compact graphs

S. I. Kadchenkoab, S. N. Kakushkinb, G. A. Zakirovaa

a South Ural State University, Chelyabinsk, Russian Federation
b Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation
Full-text PDF (469 kB) Citations (1)
References:
Abstract: The method of finding the eigenvalues and eigenfunctions of abstract discrete semi-bounded operators on compact graphs is developed. Linear formulas allowing to calculate the eigenvalues of these operators are obtained. The eigenvalues can be calculates starting from any of their numbers, regardless of whether the eigenvalues with previous numbers are known. Formulas allow us to solve the problem of computing all the necessary points of the spectrum of discrete semibounded operators defined on geometric graphs. The method for finding the eigenfunctions is based on the Galerkin method. The problem of choosing the basis functions underlying the construction of the solution of spectral problems generated by discrete semibounded operators is considered. An algorithm to construct the basis functions is developed. A computational experiment to find the eigenvalues and eigenfunctions of the Sturm–Liouville operator defined on a two-ribbed compact graph with standard gluing conditions is performed. The results of the computational experiment showed the high efficiency of the developed methods.
Keywords: perturbed operators; eigenvalues; eigenfunctions; compact graph; continuity conditions; Kirchhoff conditions.
Received: 21.04.2017
Bibliographic databases:
Document Type: Article
UDC: 519.624.3
MSC: 47A10
Language: English
Citation: S. I. Kadchenko, S. N. Kakushkin, G. A. Zakirova, “Spectral problems on compact graphs”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017), 156–162
Citation in format AMSBIB
\Bibitem{KadKakZak17}
\by S.~I.~Kadchenko, S.~N.~Kakushkin, G.~A.~Zakirova
\paper Spectral problems on compact graphs
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2017
\vol 10
\issue 3
\pages 156--162
\mathnet{http://mi.mathnet.ru/vyuru395}
\crossref{https://doi.org/10.14529/mmp170314}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418233500014}
\elib{https://elibrary.ru/item.asp?id=28922158}
Linking options:
  • https://www.mathnet.ru/eng/vyuru395
  • https://www.mathnet.ru/eng/vyuru/v10/i3/p156
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :59
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024