Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2017, Volume 10, Issue 3, Pages 142–147
DOI: https://doi.org/10.14529/mmp170312
(Mi vyuru393)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Notes

Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems

O. S. Avsentieva, T. V. Meshcheryakovaa, V. V. Navoevb

a Voronezh Institute of the Ministry of Internal Affairs of Russia, Voronezh, Russian Federation
b Federal Service of National Guard Troops of the Russian Federation for the Sverdlovsk Region, Ekaterinburg, Russian Federation
Full-text PDF (472 kB) Citations (1)
References:
Abstract: We propose development of examination methodology based on a sequential application of the MAI method (i.e., the hierarchy analysis method) and associative training of neural networks. The proposed method is an alternative to the usual methods to solve a direct examination problem.
We present a methodological approach to the examination problem. The approach allows to save information about all objects and consider their indicators in total. Therefore, there is the soft maximum principle (softmax), based on the model of expert evaluations mixing. This approach allows different interpretations of the examination results, which save quality unchanged overall picture of the examination object indicators ratio, and to get more reliable examination results, especially in cases where the objects characteristics are very different.
Keywords: hierarchy analysis method; self-organizing neural networks; expert evaluations mixing.
Received: 25.01.2017
Bibliographic databases:
Document Type: Article
UDC: 519.816
MSC: 03D55
Language: English
Citation: O. S. Avsentiev, T. V. Meshcheryakova, V. V. Navoev, “Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017), 142–147
Citation in format AMSBIB
\Bibitem{AvsMesNav17}
\by O.~S.~Avsentiev, T.~V.~Meshcheryakova, V.~V.~Navoev
\paper Sequential application of the hierarchy analysis method and associative training of a neural network in examination problems
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2017
\vol 10
\issue 3
\pages 142--147
\mathnet{http://mi.mathnet.ru/vyuru393}
\crossref{https://doi.org/10.14529/mmp170312}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418233500012}
\elib{https://elibrary.ru/item.asp?id=29930364}
Linking options:
  • https://www.mathnet.ru/eng/vyuru393
  • https://www.mathnet.ru/eng/vyuru/v10/i3/p142
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :51
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024