Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2016, Volume 9, Issue 4, Pages 17–29
DOI: https://doi.org/10.14529/mmp160402
(Mi vyuru340)
 

Mathematical Modelling

Asymptotic estimate of a Petrov–Galerkin method for nonlinear operator-differential equation

P. V. Vinogradova, A. M. Samusenko, I. S. Manzhula

Far Eastern State Transport University, Khabarovsk, Russian Federation
References:
Abstract: In the current paper, we study a Petrov–Galerkin method for a Cauchy problem for an operator-differential equation with a monotone operator in a separable Hilbert space. The existence and the uniqueness of a strong solution of the Cauchy problem are proved. New asymptotic estimates for the convergence rate of approximate solutions are obtained in uniform topology. The minimal requirements to the operators of the equation were demanded, which guaranteed the convergence of the approximate solutions. There were no assumptions of the structure of the operators. Therefore, the method, specified in this paper, can be applied to a wide class of the parabolic equations as well as to the integral-differential equations. The initial boundary value problem for nonlinear parabolic equations of the fourth order on space variables was considered as the application.
Keywords: Cauchy problem; operator-differential equation; Petrov–Galerkin method; orthogonal projection; convergence rate.
Received: 04.06.2016
Bibliographic databases:
Document Type: Article
UDC: 517.9+517.6
MSC: 12H20, 65L60, 93A30
Language: English
Citation: P. V. Vinogradova, A. M. Samusenko, I. S. Manzhula, “Asymptotic estimate of a Petrov–Galerkin method for nonlinear operator-differential equation”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016), 17–29
Citation in format AMSBIB
\Bibitem{VinSamMan16}
\by P.~V.~Vinogradova, A.~M.~Samusenko, I.~S.~Manzhula
\paper Asymptotic estimate of a Petrov--Galerkin method for nonlinear operator-differential equation
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 4
\pages 17--29
\mathnet{http://mi.mathnet.ru/vyuru340}
\crossref{https://doi.org/10.14529/mmp160402}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390883900002}
\elib{https://elibrary.ru/item.asp?id=27318762}
Linking options:
  • https://www.mathnet.ru/eng/vyuru340
  • https://www.mathnet.ru/eng/vyuru/v9/i4/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :71
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024